# Spherical Trigonometry

CreateSpace Independent Publishing Platform, 2013 M05 16 - 180 páginas
The present work is constructed on the same plan as my treatise on Plane Trigonometry, to which it is intended as a sequel; it contains all the propositions usually included under the head of Spherical Trigonometry, together with a large collection of examples for exercise. In the course of the work reference is made to preceding writers from whom assistance has been obtained; besides these writers I have consulted the treatises on Trigonometry by Lardner, Lefebure de Fourcy, and Snowball, and the treatise on Geometry published in the Library of Useful Knowledge. The examples have been chiefly selected from the University and College Examination Papers.In the account of Napier's Rules of Circular Parts an explanation has been given of a method of proof devised by Napier, which seems to have been overlooked by most modern writers on the subject. I have had the advantage of access to an unprinted Memoir on this point by the late R. L. Ellis of Trinity College; Mr. Ellis had in fact rediscovered for himself Napier's own method. For the use of this Memoir and for some valuable references on the subject I am indebted to the Dean of Ely.Considerable labor has been bestowed on the text in order to render it comprehensive and accurate, and the examples have all been carefully verified; and thus I venture to hope that the work will be found useful by Students and Teachers.I. TODHUNTER.CONTENTSI Great and Small CirclesII Spherical TrianglesIII Spherical GeometryIV Relations between the Trigonometrical Functions of the Sides and the Angles of a Spherical TriangleV Solution of Right-angled TrianglesVI Solution of Oblique-Angled TrianglesVII Circumscribed and Inscribed CirclesVIII Area of a Spherical Triangle. Spherical ExcessIX On certain approximate FormulaX Geodetical OperationsXI On small variations in the parts of a Spherical TriangleXII On the connection of Formula in Plane and Spherical TrigonometryXIII PolyhedronsXIV Arcs drawn to fixed points on the Surface of a SphereXV Miscellaneous PropositionsXVI Numerical Solution of Spherical Triangles

### Comentarios de la gente -Escribir un comentario

No encontramos ningún comentario en los lugares habituales.