Imágenes de páginas
PDF
EPUB

7. From Mill's System of Logic, pp. 125, 126: 210-228, 8vo edition.

Reasoning, in the extended sense in which I use the term, and in which it is synonymous with Inference, is popularly said to be of two kinds reasoning from particulars to generals, and reasoning from generals to particulars; the former being called Induction, the latter Ratiocination or Syllogism. It will presently be shown that there is a third species of reasoning, which falls under neither of these descriptions, and which, nevertheless, is not only valid, but is the foundation of both the others. Of Induction, therefore, we shall say no more at present, than that it at least is, without doubt, a process of real inference. The conclusion in an induction embraces more than is contained in the premises. The principle or law collected from particular instances, the general proposition in which we embody the result of our experience, covers a much larger extent of ground than the individual experiments which form its basis. A principle ascertained by experience, is more than a mere summing up of what has been specifically observed in the individual cases which have been examined; it is a generalization grounded on those cases, and expressive of our belief, that what we there found true is true in an indefinite number of cases which we have not examined, and are never likely to examine. The nature and grounds of this inference, and the conditions necessary to make it legitimate, will be the subject of discus

sion in the Third Book: but that such inference really takes place is not susceptible of question. In every induction we proceed from truths which we knew, to truths which we did not know; from facts certified by observation, to facts which we have not observed, and even to facts not capable of being now observed; future facts, for example; but which we do not hesitate to believe on the sole evidence of the induction itself. Induction, then, is a real process of Reasoning or Inference.

OF INDUCTIONS IMPROPERLY SO CALLED.

§ 1. Induction, then, is that operation of the mind, by which we infer that what we know to be true in a particular case or cases, will be true in all cases which resemble the former in certain assignable respects. In other words, Induction is the process by which we conclude that what is true of certain individuals of a class is true of the whole class, or that what is true at certain times will be true in similar circumstances at all times.

This definition excludes from the meaning of the term Induction, various logical operations, to which it is not unusual to apply that name.

Induction, as above defined, is a process of inference; it proceeds from the known to the unknown; and any operation involving no inference, any process in which what seems the conclusion is no wider than the premises from which it is drawn, does not fall within the meaning of the term. Yet in the common books of Logic we find this laid down as the most perfect, in

:

deed the only quite perfect, form of induction. In those books, every process which sets out from a less general and terminates in a more general expression-which admits of being stated in the form, “This and that A are B, therefore every A is B"-is called an induction, whether any thing be really concluded or not and the induction is asserted not to be perfect, unless every single individual of the class A is included in the antecedent, or premise: that is, unless what we affirm of the class has already been ascertained to be true of every individual in it, so that the nominal conclusion is not really a conclusion, but a mere re-assertion of the premises. If we were to say, All the planets shine by the sun's light, from observation of each separate planet, or All the Apostles were Jews, because this is true of Peter, Paul, John, and every other apostle these, and such as these, would, in the phraseology in question, be called perfect, and the only perfect, Inductions. This, however, is a totally different kind of induction from ours; it is not an inference from facts known to facts unknown, but a mere short-hand registration of facts known. The two simulated arguments which we have quoted, are not generalizations; the propositions purporting to be conclusions from them, are not really general propositions. A general proposition is one in which the predicate is affirmed or denied of an unlimited number of individuals; namely, all, whether few or many, existing or capable of existing, which possess the properties connoted by the subject of

the proposition.

"All men are mortal 99 does not mean all now living, but all men past, present, and to come. When the signification of

the term is limited so as to render it a name not for any and every individual falling under a certain general description, but only for each of a number of individuals, designated as such, and as it were, counted off individually, the proposition, though it may be general in its language, is no general proposition, but merely that number of singular propositions, written in an abridged character. The operation may be very useful, as most forms of abridged notation are ; but it is no part of the investigation of truth, though often bearing an important part in the preparation of the materials for that investigation.

As we may sum up a definite number of singular propositions in one proposition, which will be apparently, but not really, general, so we may sum up a definite number of general propositions in one proposition, which will be apparently, but not really, more general. If by a separate induction applied to every distinct species of animals, it has been established that each possesses a nervous system, and we affirm thereupon that all animals have a nervous system; this looks like a generalization, though as the conclusion merely affirms of all what has already been affirmed of each, it seems to tell us nothing but what we knew before. A distinction, however, must be made. If in concluding that all animals have a nervous system, we mean the same thing and

no more as if we had said "all known animals,' the proposition is not general, and the process by which it is arrived at is not induction. But if our meaning is that the observations made of the various species of animals have discovered to us a law of animal nature, and that we are in a condition to say that a nervous system will be found even in animals yet undiscovered, this indeed is an induction; but in this case the general proposition contains more than the sum of the special propositions from which it is inferred. The distinction is still more forcibly brought out when we consider, that if this real generalization be legitimate at all, its legitimacy probably does not require that we should have examined without exception every known species. It is the number and nature of the instances, and not their being the whole of those which happen to be known, that makes them sufficient evidence to prove a general law: while the more limited assertion, which stops at all known animals, cannot be made unless we have rigorously verified it in every species. In like manner (to return to a former example) we might have inferred, not that all the planets, but that all planets, shine by reflected light the former is no induction; the latter is an induction, and a bad one, being disproved by the case of double stars-self-luminous bodies which are properly planets, since they revolve round a centre.

:

§ 2. There are several processes used in mathematics which require to be distinguished from Induction, being not unfrequently called by that

« AnteriorContinuar »