Skeleton propositions &c. of Euclid, books i and ii, with references, by H. Green, Volumen2

Portada
 

Comentarios de la gente - Escribir un comentario

No encontramos ningún comentario en los lugares habituales.

Otras ediciones - Ver todas

Términos y frases comunes

Pasajes populares

Página 95 - If a straight line be divided into any two parts, the squares of the whole line, and of one of the parts, are equal to twice the rectangle contained by the whole and that part, together with the square of the other part. Let the straight line AB be divided into any two parts in the point C ; the squares of AB, BC are equal to twice the rectangle AB, BC, together with the square of AC.
Página 99 - If a straight line be divided into two equal parts, and also into two unequal parts; the rectangle contained by the unequal parts, together with the square of the line between the points of section, is equal to the square of half the line.
Página 107 - To divide a given straight line into two parts, so that the rectangle contained by the whole and one of the parts, shall be equal to the square on the other part.
Página 93 - If a straight line be bisected, and produced to any point ; the rectangle contained by the whole line thus produced, and the part of it produced, together with the square...
Página 101 - IF a straight line be bisected, and produced to any point, the square of the whole line thus produced, and the square of the part of it produced, are together double of the square of half the line bisected, and of the square of the line made up of the half and the part produced.
Página 81 - If there be two straight lines, one of which is divided into any number of parts, the rectangle contained by the two straight lines is equal to the rectangles contained by the undivided line, and the several parts of the divided line. Let...
Página 109 - IN obtuse angled triangles, if a perpendicular be drawn from any of the acute angles to the opposite side produced, the square of the side subtending the obtuse angle is greater than the squares of the sides containing the obtuse angle, by twice the rectangle contained by the side upon which, when produced, the perpendicular falls, and the straight line intercepted without the triangle between the perpendicular and the obtuse angle.
Página 96 - AB2+CK=2AB.BC-fHF, that is, (since CK=CB2, and HF=AC2,) AB2+CB2=2AB.BC+AC2. " COR. Hence, the sum of the squares of any two lines is equal to " twice the rectangle contained by the lines together with the square of

Información bibliográfica