Imágenes de páginas

that the cause, whatever it may be, is the same or nearly the same in all cases.

We will now look a little closer at the probable nature of the differences between species which induce sterility in first crosses and in hybrids. In the case of first crosses, the greater or less difficulty in effecting an union and in obtaining offspring apparently depends on several distinct causes. There must sometimes be a physical impossibility in the male element reaching the ovule, as would be the case with a plant having a pistil too long for the pollen-tubes to reach the ovarium. It has also been observed that when the pollen of one species is placed on the stigma of a distantly allied species, though the pollen-tubes protrude, they do not penetrate the stigmatic surface. Again, the male element may reach the female element but be incapable of causing an embryo to be developed, as seems to have been the case with some of Thuret's experiments on Fuci. No explanation can be given of these facts, any more than why certain trees cannot be grafted on others. Lastly, an embryo may be developed, and then perish at an early period. This latter alternative has not been sufficiently attended to; but I believe, from observations communicated to me by Mr. Hewitt, who has had great experience in hybridising pheasants and fowls, that the early death of the embryo is a very frequent cause of sterility in first crosses. Mr. Salter has recently given the results of an examination of about 500 eggs produced from various crosses between three species of Gallus and their hybrids; the majority of these eggs had been fertilised; and in the majority of the fertilised eggs, the embryos had either been partially developed and had then perished, or had become nearly mature, but the young chickens had been unable to break through the shell. Of the chickens which were born, more than four-fifths died within the first few days, or at latest weeks, “without any obvious cause, apparently from mere inability to live; ” so that from the 500 eggs only twelve chickens were reared. With plants, hybridised embryos probably often perish in a like manner; at least it is known that hybrids raised from very distinct species are sometimes weak and dwarfed, and perish at an early age; of which fact Max Wichura has recently given some striking cases with hybrid willows. It may be here worth noticing that in some cases of parthenogenesis, the embryos within the eggs of silk moths which had not been fertilised, pass through their early stages of development and then perish like the embryos produced by a cross between distinct species. Until becoming acquainted with these facts, I was unwilling to believe in the frequent early death of hybrid embryos; for hybrids, when once born, are generally healthy and longlived, as we see in the case of the common mule. Hybrids, however, are differently circumstanced before and after birth: when born and living in a country where their two parents live, they are generally placed under suitable conditions of life. But a hybrid partakes of only half of the nature and constitution of its mother; it may therefore before birth, as long as it is nourished within its mother’s womb, or within the egg or seed produced by the mother, be exposed to conditions in some degree unsuitable, and consequently be liable to perish at an early period; more especially as all very young beings are eminently sensitive to injurious or unnatural conditions of life. But after all, the cause

more probably lies in some imperfection in the original
act of impregnation, causing the embryo to be imper-
fectly developed, rather than in the conditions to which
it is subsequently exposed.
In regard to the sterility of hybrids, in which the
sexual elements are imperfectly developed, the case is
somewhat different. I have more than once alluded to
a large body of facts showing that, when animals and
plants are removed from their natural conditions, they
are extremely liable to have their reproductive systems
seriously affected. This, in fact, is the great bar to
the domestication of animals. Between the sterility
thus superinduced and that of hybrids, there are many
points of similarity. In both cases the sterility is inde-
pendent of general health, and is often accompanied
by excess of size or great luxuriance. In both cases the
sterility occurs in various degrees; in both, the male
element is the most liable to be affected; but some-
times the female more than the male. In both, the
tendency goes to a certain extent with systematic affin-
ity, for whole groups of animals and plants are rendered
impotent by the same unnatural conditions; and whole
groups of species tend to produce sterile hybrids. On
the other hand, one species in a group will sometimes
resist great changes of conditions with unimpaired fer-
tility; and certain species in a group will produce un-
usually fertile hybrids. No one can tell, till he tries,
whether any particular animal will breed under confine-
ment, or any exotic plant seed freely under culture;
nor can he tell till he tries, whether any two species
of a genus will produce more or less sterile hybrids.
Lastly, when organic beings are placed during several

generations under conditions not natural to them,


they are extremely liable to vary, which seems to be partly due to their reproductive systems having been specially affected, though in a lesser degree than when sterility ensues. So it is with hybrids, for their offspring in successive generations are eminently liable to vary, as every experimentalist has observed.

Thus we see that when organic beings are placed under new and unnatural conditions, and when hybrids are produced by the unnatural crossing of two species, the reproductive system, independently of the general state of health, is affected in a very similar manner. In the one case, the conditions of life have been disturbed, though often in so slight a degree as to be inappreciable by us; in the other case, or that of hybrids, the external conditions have remained the same, but the organisation has been disturbed by two distinct structures and constitutions, including of course the reproductive systems, having been blended into one. For it is scarcely possible that two organisations should be compounded into one, without some disturbance occurring in the development, or periodical action, or mutual relations of the different parts and organs one to another or to the conditions of life. When hybrids are able to breed inter se, they transmit to their offspring from generation to generation the same compounded organisation, and hence we need not be surprised that their sterility, though in some degree variable, does not diminish; it is even apt to increase, this being generally the result, as before explained, of too close interbreeding. The above view of the sterility of hybrids being caused by two constitutions being compounded into one has been strongly maintained by Max Wichura.

It must, however, be owned that we cannot understand, on the above or any other view, several facts with respect to the sterility of hybrids; for instance, the unequal fertility of hybrids produced from reciprocal crosses; or the increased sterility in those hybrids which occasionally and exceptionally resemble closely either pure parent. Nor do I pretend that the foregoing remarks go to the root of the matter; no explanation is offered why an organism, when placed under unnatural conditions, is rendered sterile. All that I have attempted to show is, that in two cases, in some respects allied, sterility is the common result, in the one case from the conditions of life having been disturbed, in the other case from the organisation having been disturbed by two organisations being compounded into one.

A similar parallelism holds good with an allied yet very different class of facts. It is an old and almost universal belief founded on a considerable body of evidence, which I have elsewhere given, that slight changes in the conditions of life are beneficial to all living things. We see this acted on by farmers and gardeners in their frequent exchanges of seed, tubers, &c., from one soil or climate to another, and back again. During the convalescence of animals, great benefit is derived from almost any change in their habits of life. Again, both with plants and animals, there is the clearest evidence that a cross between individuals of the same species, which differ to a certain extent, gives vigour and fertility to the offspring; and that close interbreeding continued during several generations between the nearest relations, if these be kept under the same conditions of life, almost always leads to decreased size, weakness, or sterility.

« AnteriorContinuar »