Imágenes de páginas
PDF
EPUB

ning of such useful development?" In answer, it may be asked, why should not the early progenitors of the whales with baleen have possessed a mouth constructed something like the lamellated beak of a duck? Ducks, like whales, subsist by sifting the mud and water; and the family has sometimes been called Criblatores, or sifters. I hope that I may not be misconstrued into saying that the progenitors of whales did actually possess mouths lamellated like the beak of a duck. I wish only to show that this is not incredible, and that the immense plates of baleen in the Greenland whale might have been developed from such lamellæ by finely graduated steps, each of service to its possessor.

The beak of a shoveller-duck (Spatula clypeata) is a more beautiful and complex structure than the mouth of a whale. The upper mandible is furnished on each side (in the specimen examined by me) with a row or comb formed of 188 thin, elastic lamellæ, obliquely bevelled so as to be pointed, and placed transversely to the longer axis of the mouth. They arise from the palate, and are attached by flexible membrane to the sides of the mandible. Those standing towards the middle are the longest, being about one-third of an inch in length, and they project .14 of an inch beneath the edge. At their bases there is a short subsidiary row of obliquely transverse lamellæ. In these several respects they resemble the plates of baleen in the mouth of a whale. But towards the extremity of the beak they differ much, as they project inwards, instead of straight downwards. The entire head of the shoveller, though incomparably less bulky, is about one-eighteenth of the length of the head of a moderately large Balanoptera rostrata, in which species the baleen is only nine inches long; so

that if we were to make the head of the shoveller as long as that of the Balanoptera, the lamelle would be six inches in length, that is, two-thirds of the length. of the baleen in this species of whale. The lower manIdible of the shoveller-duck is furnished with lamellæ of equal length with those above, but finer; and in being thus furnished it differs conspicuously from the lower jaw of a whale, which is destitute of baleen. On the other hand the extremities of these lower lamellæ are frayed into fine bristly points, so that they thus curiously resemble the plates of baleen. In the genus Prion, a member of the distinct family of the Petrels, the upper mandible alone is furnished with lamella, which are well developed and project beneath the margin; so that the beak of this bird resembles in this respect the mouth of a whale.

From the highly developed structure of the shoveller's beak we may proceed (as I have learnt from information and specimens sent to me by Mr. Salvin), without any great break, as far as fitness for sifting is concerned, through the beak of the Merganetta armata, and in some respects through that of the Aix sponsa, to the beak of the common duck. In this latter species, the lamellæ are much coarser than in the shoveller, and are firmly attached to the sides of the mandible; they are only about 50 in number on each side, and do not project at all beneath the margin. They are square-topped, and are edged with translucent hardish tissue, as if for crushing food. The edges of the lower mandible are crossed by numerous fine ridges, which project very little. Although the beak is thus very inferior as a sifter to that of the shoveller, yet this bird, as every one knows, constantly uses it for this purpose. There are other

species, as I hear from Mr. Salvin, in which the lamella are considerably less developed than in the common duck; but I do not know whether they use their beaks for sifting the water.

[ocr errors]

Turning to another group of the same family. In the Egyptian goose (Chenalopex) the beak closely resembles that of the common duck; but the lamellæ are not so numerous, nor so distinct from each other, nor do they project so much inwards; yet this goose, as I am informed by Mr. E. Bartlett, uses its bill like a duck by throwing the water out at the corners." Its chief food, however, is grass, which it crops like the common goose. In this latter bird, the lamella of the upper mandible are much coarser than in the common duck, almost confluent, about 27 in number on each side, and terminating upwards in teeth-like knobs. The palate is also covered with hard rounded knobs. The edges of the lower mandible are serrated with teeth much more prominent, coarser, and sharper than in the duck. The common goose does not sift the water, but uses its beak exclusively for tearing or cutting herbage, for which purpose it is so well fitted, that it can crop grass closer than almost any other animal. There are other species of geese, as I hear from Mr. Bartlett, in which the lamellæ are less developed than in the common goose.

We thus see that a member of the duck family, with a beak constructed like that of the common goose and adapted solely for grazing, or even a member with a beak having less well-developed lamella, might be converted by small changes into a species like the Egyptian goose, -this into one like the common duck,—and, lastly, into one like the shoveller, provided with a beak almost exclusively adapted for sifting the water; for this bird

could hardly use any part of its beak, except the hooked tip, for seizing or tearing solid food. The beak of a goose, as I may add, might also be converted by small changes into one provided with prominent, recurved teeth, like those of the Merganser (a member of the same. family), serving for the widely different purpose of securing live fish.

Returning to the whales. The Hyperoodon bidens is destitute of true teeth in an efficient condition, but its palate is roughened, according to Lacepède, with small, unequal, hard points of horn. There is, therefore, nothing improbable in supposing that some early Cetacean form was provided with similar points of horn on the palate, but rather more regularly placed, and which, like the knobs on the beak of the goose, aided it in seizing or tearing its food. If so, it will hardly be denied that the points might have been converted through variation and natural selection into lamella as well-developed as those of the Egyptian goose, in which case they would have been used both for seizing objects and for sifting the water; then into lamellæ like those of the domestic duck; and so onwards, until they became as well constructed as those of the shoveller, in which case they would have served exclusively as a sifting apparatus. From this stage, in which the lamella would be two-thirds of the length of the plates of baleen in the Balaenoptera rostrata, gradations, which may be observed in still-existing Cetaceans, lead us onwards to the enormous plates of baleen in the Greenland whale. Nor is there the least reason to doubt that each step in this scale might have been as serviceable to certain ancient Cetaceans, with the functions of the parts slowly changing during the progress of development, as are the grada

tions in the beaks of the different existing members of the duck-family. We should bear in mind that each species of duck is subjected to a severe struggle for existence, and that the structure of every part of its frame must be well adapted to its conditions of life.

The Pleuronectidæ, or Flat-fish, are remarkable for their asymmetrical bodies. They rest on one side,—in the greater number of species on the left, but in some on the right side; and occasionally reversed adult specimens occur. The lower, or resting-surface, resembles at first sight the ventral surface of an ordinary fish: it is of a white colour, less developed in many ways than the upper side, with the lateral fins often of smaller size. But the eyes offer the most remarkable peculiarity; for they are both placed on the upper side of the head. During early youth, however, they stand opposite to each other, and the whole body is then symmetrical, with both sides equally coloured. Soon the eye proper to the lower side begins to glide slowly round the head to the upper side; but does not pass right through the skull, as was formerly thought to be the case. It is obvious that unless the lower eye did thus travel round, it could not be used by the fish whilst lying in its habitual position on one side. The lower eye would, also, have been liable to be abraded by the sandy bottom. That the Pleuronectidæ are admirably adapted by their flattened and asymmetrical structure for their habits of life, is manifest from several species, such as soles, flounders, &c., being extremely common. The chief advantages thus gained seem to be protection from their enemies, and facility for feeding on the ground. The different members, however, of the family present, as Schiödte remarks, "a long series of forms exhibiting a

« AnteriorContinuar »