Imágenes de páginas
PDF
EPUB

The materials thus absorbed are either taken up into the blood-stream or pass into a separate system of vessels called lacteals. All the blood which comes away from the alimentary canal passes into the liver, and there undergoes a good deal of elaboration in that great chemical laboratory of the body. The fluid in the lacteals passes through lymphatic glands, in which it too undergoes some elaboration before it passes into the blood-stream by a large vessel or duct.

Thus the blood, which we have seen to be enriched with oxygen in the lungs, is also enriched with prepared nutritive material through the processes of digestion and absorption in the alimentary organs and elaboration in the liver and lymphatic glands.

Here let us again notice that the details of the process. of nutrition vary very much in different forms of life. In some mammals the organs of digestion are specially fitted to deal with a flesh diet; in others they are suited for a diet of herbs. In the graminivorous birds the grain is swallowed whole, and pounded up in the gizzard. The leech swallows nothing but blood. The earthworm pours out a secretion on the leaves, by which they are partially digested before they enter the body. Many parasitic organisms have no digestive canal, the nutritive juices of their host being absorbed by the general external surface of the body. But the essential life-process is in all cases the same the absorption of nutritive matter to be supplied to the cell or cells of which the organism is built up.

Thus in the mammal the blood, enriched with oxygen in the lungs, and enriched also with nutritive fluids, is brought, in the course of its circulation, into direct or indirect contact with all the myriads of living cells in the body.

In the first place, the material thus supplied is utilized for and ministers to the growth of the organs and tissues. This growth is effected by the multiplication of the constituent cells. The cells themselves have a very limited power of growth. But, especially in the early stages of

the life of the organism, when well supplied with nutriment, the cells multiply rapidly, by a process of fission, or the division of each cell into two daughter cells. The first part of the cell to divide is the nucleus, the protoplasmic network of which shows, during the process, curious and interesting arrangements and groupings of the fibres. When the nucleus has divided, the surrounding protoplasm is constricted, and separates into two portions, each of which contains a daughter nucleus.

In addition to the multiplication of cells, there is the formation, especially during periods of growth, of certain products of cell-life and cell-activity. Bone, for example, is a more or less permanent product of the activity of certain specialized cells.

There is, perhaps, no more wonderful instance of rapid and vigorous growth than the formation of the antlers of deer. These splendid weapons and adornments are shed and renewed every year. In the spring, when they are growing, they are covered over with a dark skin provided with short, fine, close-set hair, and technically termed "the velvet." If you lay your hand on the growing antler, you will feel that it is hot with the nutrient blood that is coursing beneath it. It is, too, exceedingly sensitive and tender. An army of tens of thousands of busy living cells is at work beneath that velvet surface, building the bony antlers, preparing for the battles of autumn. Each minute cell knows its work, and does it for the general good-so perfectly is the body knit into an organic whole. It takes up from the nutrient blood the special materials it requires; out of them it elaborates the crude bone-stuff, at first soft as wax, but ere long to become as hard as stone; and then, having done its work, having added its special morsel to the fabric of the antler, it remains embedded and immured, buried beneath the bone-products of its successors or descendants. No hive of bees is busier or more replete with active life than the antler of a stag as it grows beneath the soft, warm velvet. And thus are built up in the course of a few weeks those splendid "beams," with

their "tynes" and "snags," which, in the case of the wapiti, even in the confinement of our Zoological Gardens, may reach a weight of thirty-two pounds, and which, in the freedom of the Rocky Mountains, may reach such a size that a man may walk, without stooping, beneath the archway made by setting up upon their points the shed antlers. When the antler has reached its full size, a circular ridge makes its appearance at a short distance from the base. This is the "burr," which divides the antler into a short "pedicel" next the skull, and the "beam" with its branches above. The circulation in the bloodvessels of the beam now begins to languish, and the velvet dies and peels off, leaving the hard, dead, bony substance exposed. Then is the time for fighting, when the stags challenge each other to single combat, while the hinds stand timidly by. But when the period of battle is over, and the wars and loves of the year are past, the bone beneath the burr begins to be eaten away and absorbed, through the activity of certain large bone-eating cells, and, the base of attachment being thus weakened, the beautiful antlers are shed; the scarred surface skins over and heals, and only the hair-covered pedicel of the antler is left.*

Not only are there these more or less permanent products of cell-activity which are built up into the framework of the body; there are other products of a less enduring, but, in the case of some of them, not less useful character. The secretions, for example, which, as we have seen, minister in such an important manner to nutrition, are of this class. The salivary fluids, the gastric juice, the pancreatic products, and the bile,-all of these are products of cell-life and cell-activity. And then there are certain products of cell-life which must be cast out from the body as soon as possible. These are got rid of in the excretions, of which the carbonic acid gas expelled in the lungs and the waste-products eliminated through the kidneys are examples. They are the ultimate organic

* From a popular article of the author's on "Horns and Antlers," in Atalanta

products of the combustion that takes place in the muscular, nervous, and other tissues.

The animal organism has sometimes been likened to a steam-engine, in which the food is the fuel which enters into combustion with the oxygen taken in through the lungs. It may be worth while to modify and modernize this analogy-always remembering, however, that it is an analogy, and that it must not be pushed too far.

In the ordinary steam-engine the fuel is placed in the fire-box, to which the oxygen of the air gains access; the heat produced by the combustion converts the water in the boiler into steam, which is made to act upon the piston, and thus set the machinery in motion. But there is another kind of engine, now extensively used, which works on a different principle. In the gas-engine the fuel is gaseous, and it can thus be introduced in a state of intimate mixture with the oxygen with which it is to unite in combustion. This is a great advantage. The two can unite rapidly and explosively. In gunpowder the same end is effected by mixing the carbon and sulphur with nitre, which contains the oxygen necessary for their explosive combustion. And this is carried still further in dynamite and gun-cotton, where the elements necessary for explosive combustion are not merely mechanically mixed, but are chemically combined in a highly unstable compound.

But in the gas-engine, not only is the fuel and the oxygen thus intimately mixed, but the controlled explosions and the resulting condensation are caused to act directly on the piston, and not through the intervention of water in a boiler. Whereas, therefore, in the steamengine the combustion is to some extent external to the working of the machine, in the gas-engine it is to a large extent internal and direct.

Now, instead of likening the organism as a whole to a steam-engine, it is more satisfactory to liken each cell to a gas-engine. We have seen that the cell-substance around the nucleus is composed of a network of proto

plasm, the plasmogen, enclosing within its meshes a more fluid material, the plasm. It is probable that this more fluid material is an explosive, elaborated through the vital activity of the protoplasmic network. During the period of repose which intervenes between periods of activity, the protoplasmic network is busy in construction, taking from the blood-discs oxygen, and from the blood-fluid carbonaceous and nitrogenous materials, and knitting these together into relatively unstable explosive compounds. These explosive compounds are like the mixed air and gas of the gas-engine. A rested muscle may be likened to a complex and well-organized battery of gas-engines. On the stimulus supplied through a nerve-channel a series of co-ordinated explosions takes place: the gas-engines are set to work; the muscular fibres contract; the products of the explosions (one of which is carbonic acid gas) are taken up and hurried away by the blood-stream; and the protoplasm sets to work to form a fresh supply of explosive material. Long before the invention of the gas-engine, long before gun-cotton or dynamite were dreamt of, long before some Chinese or other inventor first mixed the ingredients of gunpowder, organic nature had utilized the principle of controlled explosions in the protoplasmic cell.

Certain cells are, however, more delicately explosive than others. Those, for example, on or near the external surface of the body-those, that is to say, which constitute the end organs of the special senses-contain explosive material which may be fired by a touch, a sound, an odour, the contact with a sapid fluid or a ray of light. The effects of the explosions in these delicate cells, reinforced in certain neighbouring nerve-knots (ganglionic cells), are transmitted down the nerves as along a fired train of gunpowder, and thus reach that wonderful aggregation of organized and co-ordinated explosive cells, the brain. Here it is again reinforced and directed (who, at present, can say how ?) along fresh nerve-channels to muscles, or glands, or other organized groups of explosives. And in the brain, somehow associated with the explosion

« AnteriorContinuar »