Imágenes de páginas
PDF
EPUB

Then sets in what is known as the segmentation or cleavage of the ovum. First the nucleus and then the cell itself divides into two equal halves (B.), each of these shortly afterwards again dividing into two. We may call the points of intersection of these two planes of division the "poles," and the planes "vertical planes." We thus have four cells produced by two vertical planes (C.). The next plane of division is equatorial, midway between the poles. By this plane the four cells are subdivided into eight (D.). Then follow two more vertical planes intermediate between the first two. By them the eight cells are divided into sixteen. These are succeeded by two more horizontal planes midway between the equator and the poles. Thus we get thirty-two cells. So the process continues until, by fresh vertical and horizontal planes of division, the ovum is divided into a great number of cells.

But meanwhile a cavity has formed in the midst of the ovum. This makes its appearance at about the eight-cell stage, the eight cells not quite meeting in the centre of the ovum. The central cavity so formed is thus surrounded by a single layer of cells, and it remains as a single layer throughout the process of segmentation, so that there results a hollow vesicle composed of a membrane constituted by a single layer of cells (E.).

The cells on one side of the vesicle are rather larger than the others, and the next step in the process is the apparent pushing in of this part of the hollow sphere; just as one might take a hollow squash indiarubber ball, and push in one side so as to form a hollow, two-layered cup (F.). The vesicle, then, is converted into a cup, the mouth of which gradually closes in and becomes smaller, while the cup itself elongates (G.).* Thus a hollow, two-layered, stumpy, worm-like embryo is produced, the outer layer of

In some forms of life the opening of the cup marks the position of the future mouth; in others, of the future vent. In yet others it elongates into a slit, occupying the whole length of the embryo; the middle part of the slit closes up, and the opening at the far ends mark the position, the one of the future mouth, the other of the future vent.

which may be ciliated, so that by the lashing of these cilia it is enabled to swim freely in the water. The inner cavity is the primitive digestive cavity.

A cross-section through the middle of the embryo at this stage will show this central cavity surrounded by a twolayered body-wall (H.). A little later the following changes take place (J. K.): Along a definite line on the surface of the embryo, marking the region of the back, the outer layer becomes thickened; the edges of the thickened band so produced rise up on either side, so as to give rise to a median groove between them; and then, overarching and closing over the groove, convert it into a tube. This tube is called the neural tube, because it gives rise to the central nervous system. In the region of the head it expands; and from its walls, by the growth and differentiation of the cells, there is formed-in the region of the head, the brain, and along the back, the spinal cord. Immediately beneath it there is formed a rod of cells, derived from the inner layer. This rod, which is called the notochord, is the primitive axial support of the body. Around it eventually is formed the vertebral column, the arches of the vertebræ embracing and protecting the spinal cord.

*

Meanwhile there has appeared between the two primitive body-layers a third or middle layer. The cells of which it is composed arise from the inner layer, or from the lips of the primitive cup when the outer and inner layer pass the one into the other. This middle layer at first forms a more or less continuous sheet of cells between the inner and the outer layers. But ere long it splits into two sheets, of which one remains adherent to the inner layer and one to the outer layer. The former becomes the muscular part of the intestinal or digestive tube, the latter the lining of the body-wall. The space between the two is known as the body-cavity. Beneath the throat the heart is fashioned out of this middle layer.

Very frequently-that is to say, in many animals-the

• In technical language, the outer layer of cells is called the epiblast, the inner layer the hypoblast, and the mid-layer between them the mesoblast.

opening by which the primitive digestive tube communicated with the exterior has during these changes closed up, so that the digestive cavity does not any longer communicate in any way with the exterior. This is remedied by the formation of a special depression or pit at the front end for the mouth, and a similar pit at the hinder end. These pits then open into the canal, and communications with the exterior are thus established. The lungs and liver are formed as special outgrowths from the digestive tube. The ovaries or testes make their appearance at a very early period as ridges of the middle layer projecting into the body-cavity. For some time it is impossible to say whether they will produce sperms or ova; and it is said that in many cases they pass through a stage in which one portion has the special sperm-producing, and another the special ovum-producing, structure. But eventually one or other prevails, and the organs become either ovaries or testes.

Thus from the outer layer of the primitive embryo is produced the outer skin, together with the hairs, scales, or feathers which it carries; from it also is produced the nervous system, and the end-organs of the special senses. From the inner layer is formed the digestive lining of the alimentary tube and the glands connected therewith; from it also the primitive axial support of the body. But this primitive support gives place to the vertebral column formed round the notochord; and this is of mid-layer origin. Out of the middle layer are fashioned the muscles and framework of the body; out of it, too, the heart and reproductive organs. The tissues of many of the organs are cunningly woven out of cells from all three layers. The lens of the eye, for example, is a little piece of the outer layer pinched off and rendered transparent. The retina of that organ is an outgrowth from the brain, which,

* In technical language, the opening by which the primitive digestive cavity (or mesenteron) communicates with the exterior is called the blastopore. When this closes, the new opening for the mouth is called the stomodœum; that for the vent, the proctodœum.

as we have seen, was itself developed from the outer layer. But round the retina and the lens there is woven from the middle layer the tough capsule of the eye and the circular curtain or iris. The lining cells of the digestive tube are cells of the inner layer, but the muscular and elastic coats are of middle-layer origin. The lining cells of the salivary glands arise from the outer layer where it is pushed in to form the mouth-pit; but the supporting framework of the glands is derived from the cells of the middle layer.

Enough has now been said to give some idea of the manner in which the different tissues and organs of the organism are elaborated by the gradual differentiation of the initially homogeneous ovum. The cells into which the fertilized egg segments are at first all alike; then comes the divergence between those which are pushed in to line the hollow of the cup, and those which form its outer layer. Thereafter follows the differentiation of a special band of outer cells to form the nervous system, and a special rod, derived from the inner cells, to form the primitive axial support. And when the middle layer has come into existence, its cells group themselves and differentiate along special lines to form gristle or bone, blood or muscle.

The description above given is a very generalized and diagrammatic description. There are various ways in which complexity is introduced into the developmental process. The store of nutritive material present in the egg, for example, profoundly modifies the segmentation so that where, as in the case of birds' eggs, there is a large amount of food-yolk, not all the ovum, but only a little patch on its surface, undergoes segmentation. In this little patch the embryo is formed. Break open an egg upon which a hen has been sitting for five or six days, and you surface of the

will see the little embryo chick lying on the yolk. The large mass of yolk to which it is attached is simply a store of food-material from which the growing chick may draw its supplies.

For it is clear that the growing and developing embryo must obtain, in some way and from some source, the food

stuff for its nutrition. And this is effected, among different animals, in one of three ways. Either the embryo becomes at a very early stage a little, active, voracious, freeswimming larva, obtaining for itself in these early days of life its own living; as is the case, for example, with the oyster or the star-fish. Or the egg from which it is developed contains a large store of food-yolk, on which it can draw without stint; as is the case with birds. Or else the embryo becomes attached to the maternal organism in such a way that it can draw on her for all the nutriment which it may require; as is the case with the higher mammals.

In both these latter cases the food-material is drawn from the maternal organism, and is the result of parental sacrifice; but in different ways. In the case of the bird, the protoplasm of the ovum has acquired the power of storing up the by-products of its vital activity. The ovum of such an animal seems at first sight a standing contradiction to the statement, made some pages back, that the cell cannot grow to any great extent without undergoing division or fission; and this because volume tends to outrun surface. For the yolk of a bird's egg is a single cell, and is often of large size. But when we come to examine carefully these exceptional cases of very large cells—for what we call the yolk of an egg is, I repeat, composed of a single cell we find that the formative protoplasm is arranged as a thin patch on one side of the yolk in the case of the bird's egg, or as a thin pellicle surrounding the yolk in the case of that of the lobster or the insect. All the rest is a product of protoplasmic life stowed away beneath the patch or within the pellicle. And this stored material is relatively stable and inert, not undergoing those vital disruptive changes which are characteristic of living formative protoplasm. The mass of formative protoplasm, even in the large eggs of birds, is not very great, and is so arranged as to offer a relatively extensive surface. All the rest, the main mass of the visible egg-yolk, is the stored product of a specialized activity of the formative protoplasm. But all

« AnteriorContinuar »