Imágenes de páginas
PDF
EPUB

you, to resolve all into attraction; but, besides that attraction seems in itself as unintelligible as repulsion, there are some appearances of repulsion that I cannot so easily explain by attraction; this, for one instance. When the pair of cork balls are suspended by flaxen threads, from the end of the prime conductor, if you bring a rubbed glass tube near the conductor, but without touching it, you see the balls separate, as being electrified positively; and yet you have communicated no electricity to the conductor, for, if you had, it would have remained there, after withdrawing the tube; but the closing of the balls immediately thereupon, shows that the conductor has no more left in it than its natural quantity. Then, again approaching the conductor with the rubbed tube, if, while the balls are separated, you touch with a finger that end of the conductor to which they hang, they will come together again, as being, with that part of the conductor, brought to the same state with your finger, that is, the natural state. But the other end of the conductor, near which the tube is held, is not in that state, but in the negative state, as appears on removing the tube; for then part of the natural quantity left at the end near the balls, leaving that end to supply what is wanting at the other, the whole conductor is found to be equally in the negative state. Does not this indicate, that the electricity of the rubbed tube had repelled the electric fluid, which was diffused in the conductor while in its natural state, and forced it to quit the end to which the tube was brought near, accumulating itself on the end to which the balls were suspended? I own I find it difficult to account for its quitting that end, on the approach of the rubbed tube, but on the supposition of repulsion; for, while the conductor was in the same state with the air, that is, the natural state, it does not seem to me easy to suppose, that an attraction should suddenly

[subsumed][merged small][subsumed][subsumed][merged small][ocr errors][graphic]

take place between the air and the natural quantity of the electric fluid in the conductor, so as to draw it to, and accumulate it on, the end opposite to that approached by the tube; since bodies, possessing only their natural quantity of that fluid, are not usually seen to attract each other, or to affect mutually the quantities of electricity each contains.

There are likewise appearances of repulsion in other parts of nature. Not to mention the violent force with which the particles of water, heated to a certain degree, separate from each other, or those of gunpowder, when touched with the smallest spark of fire, there is the seeming repulsion between the same poles of the magnet, a body containing a subtile movable fluid in many respects analogous to the electric fluid. If two magnets are so suspended by strings, as that their poles of the same denomination are opposite to each other, they will separate and continue so; or, if you lay a magnetic steel bar on a smooth table, and approach it with another parallel to it, the poles of both in the same position, the first will recede from the second, so as to avoid the contact, and may thus be pushed (or at least appear to be pushed) off the table. Can this be ascribed to the attraction of any surrounding body or matter drawing them asunder, or drawing the one away from the other? If not, and repulsion exists in nature, and in magnetism, why may it not exist in electricity? We should not, indeed, multiply causes in philosophy without necessity; and the greater simplicity of your hypothesis would recommend it to me, if I could see that all appearances would be solved by it. But I find, or think I find, the two causes more convenient than Thus I might solve the circular motion of your horizontal stick, supported on a pivot, with two pins at their ends, pointing contrary ways, and

one of them alone.

VOL. V.

49

GG

moving in the same direction when electrified, whether positively or negatively; when positively, the air opposite to the points, being electrized positively, repels the points; when negatively, the air opposite the points also, by their means, electrized negatively, attraction takes place between the electricity in the air behind the heads of the pins and the negative pins, and so they are, in this case drawn in the same direction that in the other they were driven. You see I am willing to meet you half way, a complaisance I have not met with in our brother Nollet, or any other hypothesismaker, and therefore may value myself a little upon it, especially as they say I have some ability in defending even the wrong side of a question, when I think fit to take it in hand.

What you give as an established law of the electric fluid, "That quantities of different densities mutually attract each other, in order to restore the equilibrium," is, I think, not well founded, or else not well expressed. Two large cork balls, suspended by silk strings, and both well and equally electrified, separate to a great distance. By bringing into contact with one of them another ball of the same size, suspended likewise by silk, you will take from it half its electricity. It will then, indeed, hang at a less distance from the other, but the full and the half quantities will not appear to attract each other, that is, the balls will not come together. Indeed, I do not know any proof we have, that one quantity of electric fluid is attracted by another quantity of that fluid, whatever difference there may be in their densities. And, supposing in nature a mutual attraction between two parcels of any kind of matter, it would be strange if this attraction should subsist strongly while those parcels were unequal, and cease when more matter of the same kind was added

« AnteriorContinuar »