Imágenes de páginas
PDF
EPUB

It is well known among those who attend the meetings of the Farmers' Club of the American Institute, in New York, that the farm of Professor Mapes, near Newark, N. J., which maintains its wonderful fertility, year after year, without reference to wet or dry weather, has been rendered almost absolutely indifferent to the severest drought, by a course of cultivation which has been rendered possible only by under-draining. The lawns of the Central Park, which are a marvel of freshness, when the lands about the Park are burned brown, owe their vigor mainly to the complete drainage of the soil. What is true of these thoroughly cultivated lands, it is practicable to attain on all soils, which, from their compact condition, are now almost denuded of vegetation in dry seasons.

Porosity or Mellowness.-An open and mellow condi tion of the soil is always favorable for the growth of plants. They require heat, fresh air and moisture, to enable them to take up the materials on which they live, and by which they grow. We have seen that the heat of retentive soils is almost directly proportionate to the completeness with which their free water is removed by underground draining, and that, by reason of the increased facility with which air and water circulate within them, their heat is more evenly distributed among all those parts of the soil which are occupied by roots. The word moisture, in this connection, is used in contradistinction to wetness, and implies a condition of freshness and dampness,-not at all of saturation. In a saturated, a soaking-wet soil, every space between the particles is filled with water to the entire exclusion of the atmosphere, and in such a soil only aquatic plants will grow. In a dry soil, on the other hand, when the earth is contracted into clods and baked, almost as in an oven,-one of the most important conditions for growth being wanting,-nothing can thrive, save those plants which ask of the earth only an anchoring place, and seek their nourishmen from t1 air. Both air

plants and water plants have their wisely assigned places in the economy of nature, and nature provides them with ample space for growth. Agriculture, however, is directed to the production of a class of plants very different from either of these,-to those which can grow to their greatest perfection only in a soil combining, not one or two only, but all three of the conditions named above. While they require heat, they cannot dispense with the moisture which too great heat removes; while they require moisture, they cannot abide the entire exclusion of air, nor the dissipation of heat which too much water causes. The interior part of the pellets of a well pulverized soil should contain all the water that they can hold by their own absorptive power, just as the finer walls of a damp sponge hold it; while the spaces between these pellets, like the pores of the sponge, should be filled with air.

In such a soil, roots can extend in any direction, and to considerable depth, without being parched with thirst, or drowned in stagnant water, and, other things being equal, plants will grow to their greatest possible size, and all their tissues will be of the best possible texture. On rich land, which is maintained in this condition of porosity and mellowness, agriculture will produce its best results, and will encounter the fewest possible chances of failure. Of course, there are not many such soils to be found, and such absolute balance between warmth and moisture in the soil cannot be maintained at all times, and under all circumstances, but the more nearly it is maintained, the more nearly perfect will be the results of cultivation.

Chemical Action in the Soil.-Plants receive certain of their constituents from the soil, through their roots. The raw materials from which these constituents are obtained are the minerals of the soil, the manures which are artifi cially applied, water, and certain substances which are taken from the air by the absorptive action of the soil,

or are brought to it by rains, or by water flowing over the surface from other land.

The mineral matters, which constitute the ashes of plants, when burned, are not mere accidental impurities which happen to be carried into their roots in solution in the water which supplies the sap, although they vary in character and proportion with each change in the mineral composition of the soil. It is proven by chemical analysis, that the composition of the ashes, not only of different species of plants, but of different parts of the same plant, have distinctive characters, some being rich in phosphates, and others in silex; some in potash, and others in lime, and that these characters are in a measure the same, in the same plants or parts of plants, without especial reference to the soil on which they grow. The minerals which form the ashes of plants, constitute but a very small part of the soil, and they are very sparsely distributed throughout the mass; existing in the interior of its particles, as well as upon their surfaces. As roots cannot penetrate to the interior of pebbles and compact par ticles of earth, in search of the food which they require, but can only take that which is exposed on their surfaces, and, as the oxydizing effect of atmospheric air is useful in preparing the crude minerals for assimilation, as well as in decomposing the particles in which they are bound up,-a process which is allied to the rusting of metals, the more freely atmospheric air is allowed, or induced, to circulate among the inner portions of the soil, the more readily are its fertilizing parts made available for the use of roots. By no other process, is air made to enter so deeply, nor to circulate so readily in the soil, as by under-draining, and the deep cultivation which under-draining facilitates.

Of the manures which are applied to the land, those of a mineral character are affected by draining, in the same manner as the minerals which are native to the soil

while organic, or animal and vegetable, manures, (especially when applied, as is usual, in an incompletely fermented condition,) absolutely require fresh supplies of atmospheric air, to continue the decomposition which alone can prepare them for their proper effect on vegeta. tion.

If kept saturated with water, so that the air is excluded, animal manures lie nearly inert, and vegetable matters decompose but incompletely,-yielding acids which are injurious to vegetation, and which would not be formed in the presence of a sufficient supply of air. An instance is cited by H. Wauer where sheep dung was preserved, for five years, by excessive moisture, which kept it from the air. If the soil be saturated with water in the spring, and, in summer, (by the compacting of its surface, which is caused by evaporation,) be closed against the entrance of air, manures will be but slowly decomposed, and will act but imperfectly on the crop,-if, on the other hand, a complete system of drainage be adopted, manures, (and the roots which have been left in the ground by the previous crop,) will be readily decomposed, and will exercise their full influence on the soil, and on the plants growing in it.

Again, manures are more or less effective, in proportion as they are more or less thoroughly mixed with the soil In an undrained, retentive soil, it is not often possible to attain that perfect tilth, which is best suited for a proper admixture, and which is easily given after thorough draining.

The soil must be regarded as the laboratory in which nature, during the season of growth, is carrying on those hidden, but indispensable chemical separations, combinations, and re-combinations, by which the earth is made to bear its fruits, and to sustain its myriad life. The chief demand of this laboratory is for free ventilation

The

raw material for the work is at hand,—as well in the wet soil as in the dry; but the door is sealed, the damper is closed, and only a stray whiff of air can, now and then, gain entrance, only enough to commence an analysis, or a combination, which is choked off when half complete, leaving food for sorrel, but making none for grass. We must throw open door and window, draw away the water in which all is immersed, let in the air, with its all destroying, and, therefore, all re-creating oxygen, and leave the forces of nature's beneficent chemistry free play, deep down in the ground. Then may we hope for the full benefit of the fertilizing matters which our good soil contains, and for the full effect of the manures which we add.

With our land thoroughly improved, as has been described, we may carry on the operations of farming with as much certainty of success, and with as great immunity from the ill effects of unfavorable weather, as can be expected in any business, whose results depend on such a variety of circumstances. We shall have substituted certainty for chance, as far as it is in our power to do so, and shall have made farming an art, rather than a venture.

NOTE. (Third edition.) As indicated in the note to the third edition at the end of Chapter I, the expression above-"the forces of nature's beneficient chemistry-" should probably read-"the development of bacteria, nature's beneficent agent of final decomposition."

There is reason to suppose that bacterial action is much less energetic "deep down in the ground" than quite near the surface. Certain it is that manurial matters to be subjected to the action of these organisms should not be placed so deep in the ground as to be out of the tolerably easy reach of atmospheric air.

« AnteriorContinuar »